Ragged hierarchies of indeterminate depth are difficult to model and query in a relational database. Although SQL extensions and OLAP access languages provide some support for recursive parent/child relationships, these approaches have limitations. With SQL extensions, alternative ragged hierarchies cannot be substituted at query time, shared ownership structures are not supported, and time varying ragged hierarchies are not supported.  All these objections can be overcome in relational databases by modeling a ragged hierarchy with a specially constructed bridge table. This bridge table contains a row for every possible path in the ragged hierarchy and enables all forms of hierarchy traversal to be accomplished with standard SQL rather than using special language extensions.

The use of a bridge table for ragged variable depth hierarchies can be avoided by implementing a pathstring attribute in the dimension. For each row in the dimension, the pathstring attribute contains a specially encoded text string containing the complete path description from the supreme node of a hierarchy down to the node described by the particular dimension row. Many of the standard hierarchy analysis requests can then be handled by standard SQL, without resorting to SQL language extensions. However, the pathstring approach does not enable rapid substitution of alternative hierarchies or shared ownership hierarchies. The pathstring approach may also be vulnerable to structure changes in the ragged hierarchy that could force the entire hierarchy to be relabeled.