MDWT_AdventureWorks Historical Load Integration Services Packages

This BI Studio project contains packages to load the dimension and fact tables for the MDWT_AdventureWorks relational data warehouse database. This database is a simplified version of the AdventureWorksDW that ships with SQL Server 2005. MDWT_AdventureWorks is used as an example case study throughout The Microsoft Data Warehouse Toolkit.
These packages have been tested on several machines that have 1 GB of RAM.
Before You Begin
Install SQL Server, including Integration Services, SQL Studio, BI Studio, and the SQL Server 2005 Samples databases on your local machine. If you don’t use your local machine as the database server, you’ll need to edit some package connections, as we describe below.

Copy the solution directory to c:\MDWT_Projects. If you put them anywhere else, you’ll need to edit some connections inside the packages (described below).

You must first create the MDWT_AdventureWorksDW relational database and tables. The create script is available from the book’s website under Chapter 4 in the Tools and Utilities page. It is also in the SSIS solution you just copied to your c:\ drive. It’s also the same script that is generated when you run the data modeling spreadsheet. Copy the script from the script tab in the spreadsheet, or open the file cr_MDWT_AdventureWorks.sql and use SQL Studio to execute it. Make sure you uncomment the CREATE DATABASE command at the beginning of the script, or it will create all the tables in your default database.
Once the database is in place and the tables have been created, navigate to the file c:\MDWT_Projects\MDWT_AdventureWorks_SSIS\MDWT_AdventureWorks_SSIS.sln. Double-click that file to launch BI Studio.
The first time you experiment with the solution, begin by running the package RUN FIRST AND ONLY ONCE.dtsx. This package creates a directory (C:\SSIStemp) and a staging table (FactOrders_Stage). New (9-Jun-2006)
You should have stored these packages in the directory c:\MDWT_Projects. If you put the packages somewhere other than in c:\MDWT_Projects, simply edit the master packages (which call child packages) to point to the correct location. You’ll need to edit four packages:
· RUN THIS TO LOAD ALL.dtsx (connections to Master_Dims and Master_Facts)
· Master_Dims.dtsx (connections to child packages)

· Master_Facts.dtsx (connections to child packages)

· DimDate.dtsx (connection to the Excel file)

Another assumption we’ve made is that the databases are on your local machine—the same machine where BI Studio and Integration Services is running. If you’re pointing to a remote database server, you will need to modify the shared data sources as appropriate.

Running the Historical Load
To load the MDWT_AdventureWorksDW database, execute the package named RUN THIS TO LOAD ALL.dtsx. This package executes the dimension master and fact master, which in turn execute the table-specific packages. When you run the packages in BI Studio, you’ll see an error message about DimCustomer.dtsx. This package contains a long string, and SSIS fusses about it. Just say “Yes,” and everything runs just fine.
The full load can take a few minutes (it took 17 minutes on a virtual machine on one of our laptops, and 4 minutes on our poor old 2 proc server, for example). If you’d like to follow its progress, you can do so by jumping around the various child packages as they load and execute, looking for the yellow tasks. An easier way to see where things are is to do a SELECT * FROM AuditPkgExecution in the MDWT_AdventureWorksDW database.
Once the package completes, take a look at the results and explore the solution.

Exploring the Packages

There are 12 packages—three master packages, and 9 table-specific packages. They are:

· RUN THIS TO LOAD is the parent package, which runs all the others

· Master_Dims runs the packages for the seven dimensions.

· Master_Facts runs the packages for the two facts.

· DimPromotion is very simple, and is a good place to start. It loads data into DimPromotion by sourcing from the SpecialOffers table in the AdventureWorks database. Like all the dimension packages, it illustrates several best practices:

· Setting up the audit system metadata. These tasks begin and end each package. They’re interesting not only for what they explicitly do (set up the metadata), but also for illustrating how to pass variables to and from SQL statements.

· Parameterizing the source SQL statement in the data flow step

· Writing a copy of the untransformed extract into a file for archival

· Handling (and counting) errors during the insert into the dimension table

· DimDate is equally simple, but it sources from an Excel file rather than a database table.

· DimOrderInfo is almost as simple. It’s sourced primarily from the SalesReason table in AdventureWorks. One trick is hidden in the first task—we supplement the data from SalesReason by adding some “dummy” rows. Note that we’ve assigned these special rows surrogate keys in the range (<0). This violates the precept that surrogate keys should be meaningless, but it sure is convenient!
· DimCurrency starts to get slightly fancier. As expected, we source from AdventureWorks.Sales.Currency. But we add a lookup to Sales.CurrencyRate, to identify those currencies that are currently in use.

· DimProduct uses a source query that joins Production.Product and Production.ProductModel.

· We could have joined in the Subcategory and Category in that same query—it’s not very much data, so we’re not worried about query performance. Instead, we chose to use a Lookup transform in a later step to bring in that information.

· You might wonder why we have several Derived Column transforms in a row. Surely it would be more efficient to combine them into a single transform? Yes, it would, but not all that much more efficient. In this case, we valued the documentation benefits of dividing the work, more than the modest performance gain by combining all into a single transform.

· DimEmployee has a fairly complicated—realistic!—Data Flow task.
· The first interesting thing we do is to multicast the flow and then join it to itself. This self-join lets us bring in each employee’s manager’s name as an attribute.

· Note the source query (“Source from HR Employee”) includes an ORDER BY. SSIS doesn’t automatically recognize the sort order. Set it by hand by right-clicking on the OLE DB source transform, choosing the Advanced Editor, and navigating to the Input and Output Properties tab. We changed the OLE DB Source Output “IsSorted” property to True, and then changed the SortKeyPosition of the EmployeeID Output Column to 1.

· Recall that DimEmployee has some Type 2 attributes, notably the employee’s department. We actually have a little bit of history for that in the AdventureWorks demo database (a very little bit of history). You see here a simple method of bringing that history. We end up with a few “extra” rows, because one or two employees have changed departments.

· Finally, we get to DimCustomer, the most complex package for dimension processing. There are two data flow steps in this package, one for individual customers and the other for customers who are resellers.

· The reseller data flow is interesting because again we have a slight opportunity to populate the dimension with Type 2 changes. You can follow the logic of what we did.

· This branch includes a Script Transform that sets the type 2 row metadata (RowChangeReason and RowStartDate). Note that in the Input Columns tab of the Script Editor we set the RowStartDate to be ReadWrite. And in the Inputs and Outputs tab, we added an output column to the flow to hold the RowChangeReason. Other than that, the script is painfully simple.

· FactExchangeRates is the simpler of the two fact table packages. It illustrates the basic fact table design flow:

· For the historical load, remove the foreign key constraints to the dimension tables before loading. Restore them at the end of the package.

· Keep fact table source (extract) queries simple, in order to minimize the load on the transaction system

· Write the untransformed extract immediately. Here, we’re writing the extract to a staging table. A few things about this decision.

· Unlike the dimension packages, we will use the staged extract as the source in a second data step.

· In the real world, we’d probably write to a raw or text file rather than to a staging table. We wrote to a table in order to make it easier for you to open and execute the package without errors (we have a task at the beginning of the package that pre-creates the staging table).
· In the real world, if we did write the extract to a staging table, we’d do so in a staging database rather than the MDWT_AdventureWorksDW database. We threw the staging tables into MDWT_AdventureWorksDW because we didn’t want to create a ton of new databases on your system.

· Capture metadata about the extract, including row counts and perhaps some distinct counts.

· Exit the extract data flow step, and return to the control flow to check the reasonableness of the extract. If appropriate, halt execution and warn an operator.

· The second data flow step performs any necessary transformations—there are none in this case—and then does the surrogate key lookups and loads the fact table.
· FactOrders is somewhat more interesting. Like FactExchangeRates, it begins by extracting and staging the data, and then performing some validity checks.

· The second data flow task, “Stage FactOrders,” does a few transformations and cleanup before entering the surrogate key pipeline.

· The surrogate key pipeline illustrates a different method for handling surrogate key violations for every dimension. It’s really important that you handle lookup failures—you absolutely must have referential integrity between fact and all dimensions.

· The best—though most complex—method of handling lookup failures is illustrated for the Currency dimension. In this case, the package is set up to create a “dummy” row in the currency dimension.

· You can test this error handling by deleting a row from DimCurrency. We deleted the ‘FRF’ currency during testing.

· FactOrders finishes all of the surrogate key lookups except for the customer lookup, and then stages the almost-final data to a second staging table.

· DimCustomer is a Type 2 SCD, and we have some historical data with Type 2 changes

· You can’t use a simple lookup for DimCustomer, because the Lookup transform requires an equijoin. The join that we want includes a second clause that requires the fact’s OrderDate to be between the RowStartDate and RowEndDate of the dimension member.
· The most efficient way of addressing this issue is as we’ve done here: stage the facts (before the Customer lookup) to a staging table. Then use a source query that joins that staging table to the customer dimension. The source query includes the complex join that we just described. You can see it in the source query for the third data flow step, “Get CustKey and Load.”

Further Exploration

You can run any package on its own. Note, however, than if you’ve loaded the fact tables and still have constraints in place, a dimension load will fail (because you can’t truncate the dimension without violating the constraint). If you run Master_Dims on its own, it’ll unwind the constraints and pre-truncate the fact table for you.
