AW_Orders “Simple” Historical Load Integration Services Packages

This BI Studio project contains packages to load the dimension and fact tables for the AW_Orders relational data warehouse database. This database is a very simplified version of the AdventureWorksDW that ships with SQL Server 2005.
The MDWT_AdventureWorks database and packages are used as an example case study throughout The Microsoft Data Warehouse Toolkit. AW_Orders is a simplified version of the MDWT_AdventureWorks and has several important changes. First, the DimProduct table has some Type 2 attributes that require change tracking. This means the FactOrders historical load must use a BETWEEN to look up the surrogate key from the corresponding row in the DimProduct table that was in effect at the time the fact occurred.
Second, the AW_Orders set of packages demonstrates a simplified version of the audit tables. There is only one audit table, called DimAudit, and it contains a collapsed set of the attributes found in the three audit tables in the book. It tracks package execution at the package level only.

Third, the AW_Orders set of packages loads a subset of dimensions in order to demonstrate key concepts with too much repetition. The target model is not meant to represent a complete, atomic level dimensional model, (which is what you would create in the real world).

These packages have been tested on several machines that have 1 GB of RAM.
Before You Begin
1. Install SQL Server, including Integration Services, SQL Studio, BI Studio, and the SQL Server 2005 Samples databases on your local machine. If you don’t use your local machine as the database server, you’ll need to edit some package connections, as we describe below.

2. Copy the solution directory to c:\MDWT_Projects. If you put them anywhere else, you’ll need to edit some connections inside the packages (described below).

3. Create the AW_Orders relational database and tables. The create script is included inside the package solution in the file named GenerateDatabase.sql.
4. Create a directory at c:\SSIStemp. This directory must exist in order for the packages to run.

5. Once the database is in place and the tables have been created, navigate to the file c:\MDWT_Projects\AWOrders_Simple\ AWOrders_Simple.sln. Double-click that file to open the solution in BI Studio.
6. You should have stored these packages in the directory c:\MDWT_Projects. If you put the packages somewhere other than in c:\MDWT_Projects, simply edit the master packages (which call child packages) to point to the correct location. If you did NOT put the project in the recommended directory, you’ll need to edit four packages:
· RUN THIS TO LOAD ALL.dtsx (connections to Master_Dims and Master_Facts)
· Master_Dims.dtsx (connections to child packages)

· Master_Facts.dtsx (connections to child packages)

· DimDate.dtsx (connection to the Excel file)

Another assumption we’ve made is that the databases are on your local machine—the same machine where BI Studio and Integration Services is running. If you’re pointing to a remote database server, you will need to modify the shared data sources as appropriate.

Running the Historical Load
To load the AW_Orders database, execute the package named MASTER PACKAGE.dtsx. This package executes the table-specific packages. If you’d like to follow the progress of the package execution, you can do so by jumping around the various child packages as they load and execute, looking for the yellow tasks. An easier way to see what step the process is on is to do a SELECT * FROM DimAudit in the AW_Orders database.
Note: the master package has been set up with the FactOrders load disabled. That’s because this load takes a surprisingly long time (10-20 minutes or more). You can easily enable the task to run the whole thing. Alternatively, run the FactOrders package by itself once or twice to see what’s going on. It’s kind of confusing when you run it from the master package.

Exploring the Packages

There are 6 packages—a master package, and 5 table-specific packages. They are:

· MASTER PACKAGE is the parent package, which runs all the others

· DimPromotion is very simple, and is a good place to start. It loads data into the DimPromotion table by sourcing from the SpecialOffers table in the AdventureWorks database. Like all the dimension packages, it illustrates several best practices:

· Setting up the audit system metadata. These tasks begin and end each package. They’re interesting not only for what they explicitly do (set up the metadata), but also for illustrating how to pass variables to and from SQL statements.

· Parameterizing the source SQL statement in the data flow step

· Writing a copy of the untransformed extract into a file for archival

· Handling (and counting) errors during the insert into the dimension table

· DimDate is equally simple, but it sources from an Excel file rather than a database table.

· DimCurrency starts to get slightly fancier. As expected, we source from AdventureWorks.Sales.Currency. But we add a lookup to Sales.CurrencyRate, to identify those currencies that are currently in use.

· DimProduct uses a source query that joins Production.Product and Production.ProductModel.

· We could have joined in the Subcategory and Category in that same query—it’s not very much data, so we’re not worried about query performance or impacting the source system. Instead, we chose to use a Lookup transform in a later step to bring in that information.

· You might wonder why we have several Derived Column transforms in a row. Surely it would be more efficient to combine them into a single transform? Yes, it would, but not all that much more efficient. In this case, we valued the documentation benefits of dividing the work, more than the modest performance gain by combining all into a single transform.

· The other complexity in the Product package is the historical reconstruction of the Type 2 (track history) columns. There are 5 type 2 columns in the table: StandardCost, ListPrice, SellStartDate, SellEndDate, and ProductStatus. The costs are most interesting from a business perspective, but we don’t have any historical data on them. The sell dates and product status have to do with whether Adventure Works was still offering, or had discontinued, the product. We actually do have a bit of information for this set of columns, so we took this opportunity to create the historical type 2 rows. You can pick through the data flow task to see how we did that.

· Creating a history of Type 2 attribute changes has an implication for the fact table historical load as well. In particular, our fact table load needs to be smart enough to pick the version of the Product row that was in effect at the time the transaction occurred. You’ll see more about that below.

· FactOrders begins by extracting and staging the data to a table, and then performing some validity checks.

· After the first data flow task, “Extract FactOrders,” you’ll see a very simple script, that computes whether this was a “good” extract or not. Our criteria are very loose; we’re simply illustrating the concept here!
· If the extract was bad, notify the operator and halt the script

· If the extract was fine, go on to the second data flow task, Load FactOrders.

· BUT, it’s not that simple. Remember that we have a history of changes for the Product dimension? We can’t write a single, simple Data Flow task to do the historical load, because we’ll run into problems when we try to create the Lookup for the Product dimension. The Lookup transform is limited to simple equi-joins, and we need to join between a date range. In other words, we will want the Product dimension key that was in effect on the day the transaction occurred.

· Here, we’ve chosen to illustrate solving that problem by looping over the days of data in the extract. This is not the highest-performance approach but it does illustrate a common technique. (A faster approach would be to stage the data to a relational table and use SQL to do the complex join. Since we already staged the data in this package, we encourage you to create a SQL based version. Remember, you need to figure out how to handle surrogate key violations.)

· You might be surprised – even appalled – by how slowly the loop technique works for AdventureWorks data. The reason is that there’s a fixed cost in entering the Data Flow step. Since the AdventureWorks data has only a few rows for each day, we spend far more time kicking off the Data Flow than we do loading data. But if you were loading a reasonable number of rows a day, the startup cost would be relatively minor. Also, continuing in defense of this technique, consider that you may be able to write your package so that you’re loading multiple days simultaneously. On a large, multi-proc server, this could greatly improve load speeds.

· We already got the list of dates for which we extracted data. We did this in the Extract FactOrders data flow task, and stored the results in a recordset variable. Now, loop over that recordset, and redefine a view on the Product dimension for each day. Then execute the Load FactOrders data flow task.

· Load FactOrders does a few transformations and cleanup before entering the surrogate key pipeline.

· The surrogate key pipeline illustrates a different method for handling surrogate key violations for every dimension. It’s really important that you handle lookup failures—you absolutely must have referential integrity between fact and all dimensions.

· The best—though most complex—method of handling lookup failures is illustrated for the Currency dimension. In this case, the package is set up to create a “dummy” row in the currency dimension.

· You can test this error handling by deleting a row from DimCurrency. We deleted the ‘FRF’ currency during testing.

Further Exploration

You can run any package on its own. Note, however, than if you’ve loaded the fact tables and still have constraints in place, a dimension load will fail (because you can’t truncate the dimension without violating the constraint).

If you run FactOrders on its own, you can use its configuration file (DemoConfig.dtsConfig) to easily specify how many days you want to extract data for. It’s set up for just a handful (10 or so) to begin with. To do so, simply edit the XML file DemoConfig.dtsConfig. Experiment with setting date ranges before you try the whole thing! When you run FactOrders.dts from the master package, any master package settings for the extract date range will over-ride the settings from DemoConfig.dtsConfig.
