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The big data revolution is well under way. We know that the sheer bigness of the data 

is not what is interesting. Rather, big data also departs severely from the familiar text 

and number data that we have stored in relational databases and analyzed with SQL 

for more than 20 years. The format and content of big data ranges from unstructured 

free text to highly structured relational, vectors, matrices, images, and collections of 

name-value pairs. 

The first big shock to the system is that standard relational databases and SQL simply 

can’t store or process big data, and are reaching fundamental capacity and scaling 

limits. Not only are the data formats outside the scope of relational databases, but 

much of the processing requires iterative logic, complex branching, and special 

analytic algorithms. SQL is a declarative language with a powerful but fixed syntax. 

Big data generally needs procedural languages and the ability to program arbitrary 

new logic. 

The second big shock to the system is the shift away from slice and dice reporting 

based on simple filters and aggregations to analytics. Reports, dashboards and ad 

hoc queries will always be important, but big data is best exploited by combing across 

huge unfiltered datasets assembled by combining both historical and real time data. 

Finally, the third big shock to the system is the recognition that the value of big data 

increases sharply as latency decreases and the data is delivered faster. Tenfold and 

hundredfold performance improvements result in qualitatively different analysis 

opportunities, often translating into increased revenue and profit. 

All of this has made for a very dynamic, technology-driven marketplace with two main 

development threads: extended relational databases and Hadoop. I described these 

architectures in depth in my “Evolving Role of the Enterprise Data Warehouse in the 

Era of Big Data Analytics” white paper.  

The big data marketplace is far from mature, but we now have several years of 

accumulated experience with a number of best practices specific to big data. This 

white paper captures these best practices, steering a middle ground between high 

level motherhood admonitions versus down in the weeds technical minutia specific to 

a single tool. 

It’s important to recognize we have a well-tested set of best practices developed for 

relationally-based enterprise data warehouses (EDWs) that big data efforts should 

leverage. We list them briefly: 

• Drive the choice of data sources feeding the EDW from business needs 

• Focus incessantly on user interface simplicity and performance 

The following lists EDW best practices especially relevant to big data:  

• Think dimensionally: divide the world into dimensions and facts 

• Integrate separate data sources with conformed dimensions 

• Track time variance with slowly changing dimensions (SCDs) 

• Anchor all dimensions with durable surrogate keys 
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In the remainder of this paper, we divide big data best practices into four categories: 

data management, data architecture, data modeling, and data governance. 

Management Best Practices for Big DataManagement Best Practices for Big DataManagement Best Practices for Big DataManagement Best Practices for Big Data 

The following best practices apply to the overall management of a big data 

environment. 

Structure big data environments around analytics, not ad hoc querying or standard 
reporting. Every step in the data pathway from original source to analyst’s screen 

must support complex analytic routines implemented as user defined functions 

(UDFs) or via a metadata driven development environment that can be programmed 

for each type of analysis. This includes loaders, cleansers, integrators, user 

interfaces, and finally BI tools. This best practice does not recommend repudiating 

your existing environment, but rather extending it to support the new demands of 

analytics. See the architectural best practices section below. 

Do not attempt to build a legacy big data environment at this time. The big data 

environment is changing too rapidly at this time to consider building a long-lasting 

legacy foundation. Rather, plan for disruptive changes coming from every direction: 

new data types, competitive challenges, programming approaches, hardware, 

networking technology, and services offered by literally hundreds of new big data 

providers. For the foreseeable future, maintain a balance among several 

implementation approaches including Hadoop, traditional grid computing, pushdown 

optimization in an RDBMS, on-premise computing, cloud computing, and even your 

mainframe. No one of these approaches will be the single winner in the long run. 

Platform as a service (PaaS) providers offer an attractive option that can help you 

assemble a compatible set of tools. Similarly, much of the system architecture and 

programming can be specified in a layer above the specific deployment choices, a 

distinct advantage of metadata-driven development environments.  

 Example: Use HCatalog in the Hadoop environment to provide a layer of 

abstraction above the specific storage location and data format. This allows 

Pig scripts, for instance, to remain unchanged when locations and formats 

have been altered. 

 Example: Think of Hadoop as a flexible, general purpose environment for 

many forms of ETL processing, where the goal is to add sufficient structure 

and context to big data so that it can be loaded into an RDBMS. The same 

data in Hadoop can be accessed and transformed with Hive, Pig, HBase, and 

MapReduce code written in a variety of languages, even simultaneously. 

Above all, this demands flexibility. Assume you will reprogram and re-host all your big 

data applications within two years. Choose approaches that can be reprogrammed 

and re-hosted.  Consider using a metadata-driven codeless development 

environment to increase productivity and help insulate you from underlying 

technology changes. 
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Embrace sandbox silos and build a practice of productionizing sandbox results. Allow 

data scientists to construct their data experiments and prototypes using their 

preferred languages and programming environments. Then, after proof of concept, 

systematically reprogram and/or reconfigure these implementations with an “IT turn-

over team.” 

 Example: Your production environment for custom analytic programming 

might be MatLab within PostgreSQL or SAS within a Teradata RDBMS, but 

your data scientists might be building their proofs of concept in a wide variety 

of preferred languages and architectures. The key insight here: IT must be 

uncharacteristically tolerant of the range of technologies the data scientists 

use, and be prepared in many cases to re-implement the data scientists’ work 

in a standard set of technologies that can be supported over the long haul. 

Example: Your sandbox development environment might be a combination of 

ETL transformations and custom R code directly accessing Hadoop, but 

controlled by Informatica PowerCenter. Then when the data scientist is ready 

to hand over the proof of concept, much of the logic could immediately be 

redeployed under PowerCenter to run in a grid computing environment that is 

scalable, highly available, and secure. 

Put your toe in the water with a simple big data application: backup and archiving. 
While getting started with your big data program and as you are searching for 

valuable business use cases with limited risk and assembling the requisite big data 

skills, consider using Hadoop as a low cost, flexible backup and archiving technology. 

Hadoop can store and retrieve data in the full range of formats from totally 

unstructured to highly structured specialized formats. This approach may also let you 

address the “sunsetting” challenge where original applications may not be available in 

the distant future (perhaps because of licensing restrictions), but you may dump data 

from those applications into your own documented format. Finally, remember that 

even Hadoop consumes resources and cost – so anytime data gets stored in Hadoop, 

data retention should be considered in advance such that HDFS folders and data sets 

can be purged or archived out of HDFS easily to even lower cost storage when the 

retention period expires. 
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Architecture Best Practices for Big DataArchitecture Best Practices for Big DataArchitecture Best Practices for Big DataArchitecture Best Practices for Big Data    

The following best practices affect the overall structure and organization of your big 

data environment. 

Plan for a logical “data highway” with multiple caches of increasing latency. Physically 
implement only those caches appropriate for your environment. The data highway can 

have as many as five caches of increasing data latency, each with its distinct analytic 

advantages and tradeoffs: 

 

 

* Raw source applications: credit card fraud detection, immediate complex event 

processing (CEP) including network stability and cyber attack detection. 

* Real time applications: web page ad selection, personalized price promotions,  

online games monitoring, various forms of predictive and proactive monitoring. 

* Business activity applications: low latency KPI dashboards pushed to users, 

trouble ticket tracking, process completion tracking, “fused” CEP reporting, 

customer service portals and dashboards, and mobile sales apps. 

* Top line applications: tactical reporting, promotion tracking, mid course 

corrections based on social media buzz. “Top line” refers to the common practice 

by senior managers of seeing a quick top line review of what has happened in 

the enterprise over the past 24 hours. 

* EDW and long time series applications: all forms of reporting, ad hoc querying, 

historical analysis, master data management, large scale temporal dynamics, 

Markov chain analysis. 

Each cache that exists in a given environment is physical and distinct from the other 

caches. Data moves from the raw source down this highway through ETL processes. 

There may be multiple paths from the raw source to intermediate caches. For 

instance, data could go to the real time cache to drive a zero latency-style user 

interface, but at the same time be extracted directly into a daily top line cache that 

would look like a classic operational data store (ODS). Then the data from this ODS 

could feed the EDW. Data also flows in the reverse direction along the highway. See 

“implementing backflows” later in this section. 

Much of the data along this highway must remain in non-relational formats ranging 

from unstructured text to complex multi-structured data such as images, arrays, 

graphs, links, matrices, and sets of name-value pairs.  
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Use big data analytics as a “fact extractor” to move data to the next cache. For 

example, the analysis of unstructured text tweets can produce a whole set of 

numerical, trendable sentiment measures including share of voice, audience 

engagement, conversation reach, active advocates, advocate influence, advocacy 

impact, resolution rate, resolution time, satisfaction score, topic trends, sentiment 

ratio, and idea impact. Also, see Splunk, a technology for extracting features from and 

indexing many forms of unstructured machine data; Kapow, a technology for 

extracting many forms of web-based data from blogs, discussion forums, websites, 

and portals; and of course, Informatica’s HParser which can extract facts and 

dimensions from unstructured text documents, multi-structured XML documents and 

web logs, as well as industry standard structures such as market data, SWIFT, FIX, 

CDR, HL7, HIPAA, and many more.  

Use big data integration to build comprehensive ecosystems that integrate 
conventional structured RDMS data, paper based documents, emails, and in-house 
business-oriented social networking. One of the potent messages from big data is the 

ability to integrate disparate data sources of very different modalities. We are getting 

streams of data from new data producing channels like social networks, mobile 

devices, and automated alert processes. Imagine a big financial institution handling 

millions of accounts, tens of millions of associated paper documents, and thousands 

of professionals both within the organization but in the field as partners or customers. 

Now set up a secure “social network” of all the trusted parties to communicate as 

business is being conducted. Much of this communication is significant and should be 

saved in a queryable way. Capture all this information in Hadoop, dimensionalize it 

(see the modeling best practices below), use it in the course of business, and then 

back it up and archive it. 

Plan for data quality to be better further along the data highway. This is the classic 

tradeoff of latency versus quality. Analysts and business users must accept the reality 

that very low latency (i.e., immediate) data is unavoidably dirty because there are 

limits to how much cleansing and diagnosing can be done in very short time intervals. 

Tests and corrections on individual field contents can be performed at the fastest data 

transfer rates. Tests and corrections on structural relationships among fields and 

across data sources are necessarily slower. Tests and corrections involving complex 

business rules range from being instantaneous (such as a set of dates being in a 

certain order) to taking arbitrarily long times (such as waiting to see if a threshold of 

unusual events has been exceeded). And finally, slower ETL processes, such as 

those feeding the daily top line cache, often are built on fundamentally more complete 

data, for example where incomplete transaction sets and repudiated transactions 

have been eliminated. In these cases, the instantaneous data feeds simply do not 

have the correct information. 

Apply filtering, cleansing, pruning, conforming, matching, joining, and diagnosing at 
the earliest touch points possible. This is a corollary of the previous best practice. 

Each step on the data highway provides more time to add value to the data. Filtering, 

cleansing and pruning reduces the amount of data transferred to the next cache and 

eliminates irrelevant or corrupted data. To be fair, there is a school of thought that 

applies cleansing logic only at analysis run time, because cleansing might delete 
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“interesting outliers.” Conforming takes the active step of placing highly administered 

enterprise attributes into major entities like customer, product, and date. The 

existence of these conformed attributes allows high value joins to be made across 

separate application domains. A shorter name for this step is “integration!” 

Diagnosing allows many interesting attributes to be added to data, including special 

confidence tags and textual identifiers representing behavior clusters identified by a 

data mining professional.  Data discovery and profiling aids in the identification of 

data domains, relationships, metadata tags useful for search, sensitive data, and data 

quality issues. 

Implement backflows, especially from the EDW, to earlier caches on the data 
highway. The highly administered master dimensions in the EDW, such as customer, 

product, and date, should be connected back to data in earlier caches. Ideally, all that 

is needed is unique durable keys for these entities in all the caches. The corollary 

here is that Job One in each ETL step from one cache to the next is to replace 

idiosyncratic proprietary keys with the unique durable keys so that analysis in each 

cache can take advantage of the rich upstream content with a simple join on the 

unique durable key. Can this ETL step be performed even when transferring raw 

source data into the real time cache in less than a second? Maybe… 

Dimension data is not the only data to be transferred back down the highway toward 

the source. Derived data from fact tables, such as historical summaries and complex 

data mining findings, can be packaged as simple indicators or grand totals - and then 

transferred to earlier caches on the data highway. And finally, reference links such as 

useful keys or codes can be embedded in the low latency data caches in order to 

allow an analyst to link to other relevant data with a single click.  

Implement streaming data analytics in selected data flows. An interesting angle on 

low latency data is the desire to begin serious analysis on the data as it streams in, 

but possibly far before the data transfer process terminates. There is significant 

interest in streaming analysis systems which allow SQL-like queries to process the 

data as it flows into the system. In some use cases, when the results of a streaming 

query surpass a threshold, the analysis can be halted without running the job to the 

bitter end. An academic effort, known as continuous query language (CQL), has 

made impressive progress in defining the requirements for streaming data processing 

including clever semantics for dynamically moving time windows on the streaming 

data. Look for CQL language extensions and streaming data query capabilities in the 

load programs for both RDBMSs and HDFS deployed data sets. An ideal 

implementation would allow streaming data analysis to take place while the data is 

being loaded at gigabytes per second. 

Implement far limits on scalability to avoid a “boundary crash.” In the early days of 

computer programming, when machines had pathetically small hard drives and real 

memories, boundary crashes were common and were the bane of applications 

development. When the application runs out of disk space or real memory, the 

developer must resort to elaborate measures, usually requiring significant 

programming that adds nothing to the main content of the application. Boundary 

crashes for normal database applications have more or less been eliminated, but big 
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data raises this issue once again. Hadoop is an architecture that dramatically reduces 

programming scalability concerns because one can, for the most part, add commodity 

hardware indefinitely. Of course, even commodity hardware must be provisioned, 

plugged in and have high bandwidth network connections. The lesson is to plan very 

far ahead for scaling out to huge volumes and throughputs. 

Perform big data prototyping on a public cloud and then move to a private cloud. The 

advantage of a public cloud is that it can be provisioned and scaled up instantly. 

Examples include Amazon EMR and Google BigQuery. In those cases where the 

sensitivity of the data allows quick in-and-out prototyping, this can be very effective. 

Just remember not to leave a huge data set on-line with the public cloud provider over 

the weekend when the programmers have gone home! However, keep in mind that in 

some cases where you are trying to exploit data locality with rack-aware MapReduce 

processes, you may not be able to use a public cloud service because they may not 

give you the data storage control you need. 

Search for and expect 10x to 100x performance improvements over time, recognizing 
the paradigm shift for analysis at very high speeds. The openness of the big data 

marketplace has encouraged hundreds of special purpose tightly-coded solutions for 

specific kinds of analysis. This is a giant blessing and a curse. Once free from being 

controlled by a big vendor’s RDBMS optimizer and inner loop, smart developers can 

implement spot solutions that are truly 100 times as fast as standard techniques. For 

instance, some impressive progress has been made on the infamous “big join” 

problem where a billion row dimension is joined to a trillion row fact table. For 

example, see Yahoo’s approach for handling sparse joins on huge data sets as well 

as Google’s Dremel and BigQuery projects. The curse is that these individual spot 

solutions are not yet part of a unified single architecture. 

One very visible big data theme is visualization of data sets. “Flying around” a 

petabyte of data requires spectacular performance! Visualization of big data is an 

exciting new area of development that allows both analysis and discovery of 

unexpected features and data profiling. 

Another exciting application that imposes huge performance demands is semantic 

zooming without pre-aggregations, in which the analyst descends from a highly 

aggregated level to progressively more detailed levels in unstructured or semi-

structured data, analogous to zooming in on a map. 

The important lesson behind this best practice is that revolutionary advances in our 

power to consume and analyze big data will result from 10x to 100x performance 

gains, and we have to be prepared to add these developments to our suite of tools. 

Separate big data analytic workloads from the conventional EDW to preserve EDW 
service level agreements. If your big data is hosted in Hadoop, it probably doesn’t 

compete for resources with your conventional RDBMS-based EDW. However, be 

cautious if your big data analytics run on the EDW machine since big data 

requirements change rapidly and inevitably in the direction of requiring more compute 

resources. 
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Exploit unique capabilities of in-database analytics. The major RDBMS players all 

invest significantly in in-database analytics. Once you pay the price of loading data 

into relational tables, SQL can be combined with analytic extensions in extremely 

powerful ways. Recent notable in-database developments include IBM’s acquisition of 

Netezza and SPSS, Teradata and Greenplum’s embedding of SAS, Oracle’s Exadata 

R Enterprise, and PostgreSQL’s syntax for programming analytics and other arbitrary 

functions with the database inner loop. All of these options make available tested 

libraries of hundreds of analytic routines. Some data integration platforms provide 

pushdown optimization to leverage in-database analytics as part of a data flow or ELT 

process. 

Data Modeling Best Practices for Big DataData Modeling Best Practices for Big DataData Modeling Best Practices for Big DataData Modeling Best Practices for Big Data    

The following best practices affect the logical and physical structures of the data. 

Think dimensionally: divide the world into dimensions and facts. Business users find 

the concept of dimensions to be natural and obvious. No matter what the format of the 

data, the basic associated entities such as customer, product, service, location, or 

time can always be found. In the following best practice we will see how, with a little 

discipline, dimensions can be used to integrate data sources. But before we can get 

to the integration finish line, we must identify the dimensions in each data source and 

attach them to every low level atomic data observation. This process of 

dimensionalization is a good application for big data analytics. For example, a single 

Twitter tweet “Wow! That is awesome!” may not seem to contain anything worth 

dimensionalizing, but with some analysis we often can get customer (or citizen or 

patient), location, product (or service or contract or event), marketplace condition, 

provider, weather, cohort group (or demographic cluster), session, triggering prior 

event, final outcome, and the list goes on. Some form of automated dimensionalizing 

is required to stay ahead of the high velocity streams of data. As we point out in a 

subsequent best practice, incoming data should be fully dimensionalized at the 

earliest extraction step. 

Integrate separate data sources with conformed dimensions. Conformed dimensions 

are the glue that holds together separate data sources, and allow them to be 

combined in a single analysis. Conformed dimensions are perhaps the most powerful 

best practice from the conventional EDW world that should be inherited by big data. 

The basic idea behind conformed dimensions is the presence of one or more 

enterprise attributes (fields) in the versions of dimensions associated with separate 

data sources. For instance, every customer-facing process in an enterprise will have 

some variation of a customer dimension. These variations of the customer dimension 

may have different keys, different field definitions, and even different granularity. But 

even in the worst cases of incompatible data, one or more enterprise attributes can be 

defined that can be embedded in all the customer dimension variations. For instance, 

a customer demographic category is a plausible choice. Such a descriptor could be 

attached to nearly every customer dimension, even those at higher levels of 

aggregation. Once this has been done, analyses of that group on this customer 

demographic category can cross every participating data source with a simple sort-
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merge process after separate queries are run against the different data sources. Best 

of all, the step of introducing the enterprise attributes into the separate databases can 

be done in an incremental, agile, and non-disruptive way as described in detail in my 

“Essential Steps for the Integrated EDW” white paper on this subject. All existing 

analysis applications will continue to run as the conformed dimension content is rolled 

out. 

Anchor all dimensions with durable surrogate keys. If there is one lesson we have 

learned in the EDW world, it is not to anchor your major entities such as customer, 

product, and time with the “natural keys” defined by a specific application. These 

natural keys turn out to be a snare and a delusion in the real world. They are 

incompatible across applications and are poorly administered. The first step in every 

data source is to augment the natural key coming from a source with an enterprise-

wide durable surrogate key. Durable mean that there is no business rule that can 

change the key. The durable key belongs to IT, not to the data source. Surrogate 

means that the keys themselves are simple integers either assigned in sequence or 

generated by a robust hashing algorithm that guarantees uniqueness. An isolated 

surrogate key has no applications content. It is just an identifier. 

The big data world is filled with obvious dimensions that must possess durable 

surrogate keys. Earlier in this paper when we proposed pushing data backwards 

down the data highway, we relied on the presence of the durable surrogate keys to 

make this process work. We also stated that Job One on every data extraction from a 

raw source was to embed the durable surrogate keys in the appropriate dimensions. 

Expect to integrate structured and unstructured data. Big data considerably broadens 

the integration challenge. Much big data will never end up in a relational database; 

rather it will stay in Hadoop or a grid. But once we are armed with conformed 

dimensions and durable surrogate keys, all the forms of data can be combined in 

single analyses. For example, a medical study can select a group of patients with 

certain demographic and health status attributes, and then combine their conventional 

EDW-style data with image data (photographs, x-rays, EKGs), free form text data 

(physician’s notes), social media sentiments (opinions of treatment), and cohort group 

linkages (patients with similar situations). 

Architecturally, this integration step needs to take place at query time, not at data load 

and structure time. The most flexible way to perform this integration is through data 

virtualization, where the integrated data sets appear to be physical tables but are 

actually specifications similar to relational views where the separate data sources are 

joined at query time. If data virtualization is not used, then the final BI layer must 

accomplish this integration step. 

Track time variance with slowly changing dimensions (SCDs). Tracking time variance 

of dimensions is an old and venerable best practice from the EDW world. Basically, it 

makes good on the pledge we take to track history accurately. It is unacceptable to 

associate a current profile of a customer (or citizen, or patient, or student) with old 

history. In the worst case, the current profile is ridiculously wrong when applied to old 

history. Slowly changing dimension (SCD) processing comes in three flavors. The 

Type 1 SCD overwrites the profile when a change takes place, thereby losing history. 
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We may do this when we correct a data error. The Type 2 SCD is the most often used 

technique that generates a revised dimension record when a change takes place. The 

Type 2 SCD requires that when we generate the new dimension record, we retain the 

durable surrogate key as the glue that binds the new record to the old records, but we 

must also generate a unique primary key for the particular snapshot of the dimension 

member. Like conformed dimensions, this process has been described and vetted 

extensively. Finally the Type 3 SCD, which is not as common as the other two types, 

covers the situation where an “alternate reality” is defined that co-exists with the 

current reality. Please see the extensive coverage of SCDs in my books and on the 

kimballgroup.com website. But the point as far as big data is concerned is that it is 

just as important to associate the correct contemporary profile of a major entity with 

history as it has proven to be in the EDW world. 

Get used to not declaring data structures until analysis time. One of the charms of big 

data is putting off declaring data structures at the time of loading into Hadoop or a 

data grid. This brings many advantages. The data structures may not be understood 

at load time. The data may have such variable content that a single data structure 

either makes no sense or forces you to modify the data to fit into a structure. If you 

can load data into Hadoop, for instance, without declaring its structure, you can avoid 

a resource intensive step. And finally, different analysts may legitimately see the 

same data in different ways. Of course, there is a penalty in some cases, because 

data without a declared structure may be difficult or impossible to index for rapid 

access as in an RDBMS. However, most big data analysis algorithms process entire 

data sets without expecting precise filtering of subsets of the data. 

This best practice conflicts with traditional RDBMS methodologies, which puts a lot of 

emphasis on modeling the data carefully before loading. But this does not lead to a 

deadly conflict. For data destined for an RDBMS, the transfer from a Hadoop or data 

grid environment and from a name-value pair structure into RDBMS named columns 

can be thought of as a valuable ETL step. 

Build technology around name-value pair data sources. Big data sources are filled 

with surprises. In many cases, you open the fire hose and discover unexpected or 

undocumented data content which you must nevertheless load at gigabytes per 

second. The escape from this problem is to load such data as simple name-value 

pairs. For example, if an applicant were to disclose their financial assets, they might 

declare something unexpected like “rare postage stamp = $10,000”.  In a name-value 

pair data set, this would be loaded gracefully even though you had never seen “rare 

postage stamp” and didn’t know what to do with it at load time. Of course, this practice 

meshes nicely with the previous practice of deferring the declaration of data 

structures until past load time. 

The MapReduce programming framework requires data to be presented as name-

value pairs, which makes sense given the complete possible generality of big data. 

Use data virtualization to allow rapid prototyping and schema alterations. Data 

virtualization is a powerful technique for declaring different logical data structures on 

underlying physical data. Standard view definitions in SQL are a good example of 

data virtualization. In theory, data virtualization can present a data source in any 
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format the analyst needs. But data virtualization trades off the cost of computing at 

run time with the cost of ETL to build physical tables before run time. Data 

virtualization is a powerful way to prototype data structures and make rapid alterations 

or provide distinct alternatives. The best data virtualization strategy is to expect to 

materialize the virtual schemas when they have been tested and vetted and the 

analysts want the performance improvements of actual physical tables. 

Data Governance Best Practices for Big DataData Governance Best Practices for Big DataData Governance Best Practices for Big DataData Governance Best Practices for Big Data    

The following best practices apply to managing your data as a valuable enterprise 

asset. 

There is no such thing as big data governance. Now that we have your attention, the 

point is that data governance must be a comprehensive approach for your entire data 

ecosystem, not a spot solution for big data in isolation. Data governance for big data 

should be an extension of your approach for the governance of all your enterprise 

data. We have introduced a compelling case for how big data must be enhanced by 

integration with other existing forms of data, especially data from your EDW. But 

successful integration while establishing (or ignoring) data governance for big data in 

isolation leads to significant risk. At a minimum, data governance embraces privacy, 

security, compliance, data quality, metadata management, master data management, 

and the business glossary that exposes definitions and context to the business 

community. This is an imposing and daunting list of responsibilities and 

competencies, and IT should not attempt to define these without significant and 

sophisticated support from management - who must understand the scope of the 

effort, and support the cross-organizational cooperation required. 

Dimensionalize the data before applying governance. Here is an interesting challenge 

big data introduces: you must apply data governance principles even when you don’t 

know what to expect from the content of the data. You will receive data arriving at up 

to gigabytes per second, often as name–value pairs with unexpected content. Your 

best chance at classifying data in ways that are important to your data governance 

responsibilities is to dimensionalize it as fully as possible at the earliest stage in your 

data pipeline. Parse it, match it, and apply identity resolution on the fly. We made this 

same point when arguing for the benefits of data integration, but here we advocate 

against using the data before this dimensionalizing step. 

If analyzing data sets including identifying information about individuals or 
organizations, privacy is the most important governance perspective when working 
with any big data set incorporating information about individuals or organizations. 

Although every aspect of data governance looms as critically important, in these 

cases privacy carries the most responsibility and the most business risk. Egregious 

episodes of compromising the privacy of individuals or groups can damage your 

reputation, diminish marketplace trust, expose you to civil lawsuits, and get you in 

trouble with the law. These compromises can also be a barrier to sharing rich data 

sets between companies, institutions, third parties, and even within organizations 

severely limiting the power of big data in industries such as healthcare, education, 

and law enforcement. The flood of personal data to which we have access threatens 
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to dull our senses and lower our guards. At the very least, for most forms of analysis, 

personal details must be masked, and data aggregated enough to not allow 

identification of individuals. Note that at the time of this writing special attention must 

be paid when storing sensitive data in Hadoop since once data gets written to 

Hadoop, Hadoop doesn’t manage updates very well – so data should either be 

masked or encrypted on write (i.e., persistent data masking) or data should be 

masked on read (i.e., dynamic data masking). 

Don’t put off data governance completely in your rush to use big data. Even for your 

exploratory big data prototype projects, maintain a checklist of issues to consider as 

you go forward. You don’t want an ineffective bureaucracy, but maybe you can strive 

to deliver an agile bureaucracy! Your checklist, which you maintain discretely, should:  

• Verify there is a vision and a business case that is providing direction and 

priorities. 

• Identify people roles including data stewards, sponsors, program drivers and 

users. 

• Verify organization buy-in and cross-organization steering committees and 

sponsorship to support escalations and prioritization. 

• Qualify existing and required tools and architecture that will support the big 

data lifecycle being managed. 

• Incorporate some notion of data usage policies and data quality standards. 

• Embrace lightweight organizational change management for all other points 

on this list. 

• Measure results, operational as well as business value ROI. 

• Assess and influence dependent processes, upstream and downstream to 

minimize the ever-present garbage in/garage out dilemma. 

 

SummarySummarySummarySummary    

Big data brings a host of changes and opportunities to IT and it is easy to think that a 

whole new set of rules must be created. But with the benefit of almost a decade of 

experience, many best practices have emerged. Many of these practices are 

recognizable extensions from the EDW/BI world, and admittedly quite a few are new 

and novel ways of thinking about data and the mission of IT. But the recognition that 

the mission has expanded is welcome and is in some ways overdue. The current 

explosion of data-collecting channels, new data types, and new analytic opportunities 

mean that the list of best practices will continue to grow in interesting ways. 
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